ANL-7551

LIERARY .

gonne National L aboratory

(1 DAHLU)

L

A

F MAGNETIC FIELDS IN A METAL




The facilities of Argonne National Laboratory are owned by the United State.a Govern-
ment. Under the terms of a contract (W-31—109-Eng-38) between the U S. Atomic .Ener'gy
Commission, Argonne Universities Association and The Univ?rsity .o£. Chicago, the Um:ers:ty
employs the staff and operates the Laboratory in accordance with policies and programs ormu-
lated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University

Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cincinnati Michigan State University Saint Louis University

Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota University of Texas

Indiana University University of Missouri Washington University

Iowa State University Northwestern University Wayne State University

The University of Iowa University of Notre Dame The University of Wisconsin

LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on behalf
of the Commission:

A. Makes any warranty or representation, expressed or implied, with re-
spect to the accuracy, completeness, or usefulness of the information contained
in this report, or that the use of any information, apparatus, method, or process
disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages re-
sulting from the use of any information, apparatus, method, or process disclosed
in this report.

As used in the above, "person acting on behalf of the Commission" in-
cludes any employee or contractor of the Commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access to,
any information pursuant to his employment or contract with the Commission,
or his employment with such contractor.

Printed in the United States of America
Available from
Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Department of Commerce
Springfield, Virginia 22151
Price: Printed Copy $3,00; Microfiche $0.65




ANL-7551
Physics

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

ANALYSIS OF MAGNETIC FIELDS IN A METAL
by

D. L. Waidelich

University of Missouri, Columbia, Missouri
Visiting Scientist, ANL

Metallurgy Division
Program 12.1.13 »

May 1969






TABLE OF CONTENTS

IR I T S e S e e O DR - s ie i e e e e e
R e e e e s el s ilnrs s a s 5 8 s 0 5 5 s ale
GG R e e R R e R PSR
EIESPRRIMENTAL AGREEMIENT . . . .. 5o ie G000 h o o v o an s s
NI =W R VI ANATYEIS v ol o ¢ v s e sn o i snaines sian s
B N A L IS SR ok ) Tl o in i v o o 3 s wb wae ay » o6 & a o
APPENDICES

T T T GRS g S R SR S ST R S MR P
BonDorivalian O HehAB. o i v i v 5 15 55 5 8.5 6 5 b5 ww eibn s mi
C. 'The COnatantes CIBIA CREB.L i i o 7 il b e o o Bl e 5 & hLPe
D.

Flane=waus ARAIFRIB o iy i ion e SR B R w6 Sk TR

i e B S 4 S R I N el o R D o

10
13
14

15



g
;r
P‘{. b




LIST OF FIGURES

Title

Assumed Variation of the Magnetic Field at the Surface of the

T o i E o AR, 5 o s s 560 o o = o

Variation of the Vertical Magnetic Field in the Metal . . ... ..

Calculated and Measured Curves of the Vertical Magnetic

Field after Passing through a Stainless Steel Sheet



e

2AAVYDIE S0 TEd

31417
35 sitangsbl odi To aeiisitaY
f (514 Aiteagshl IssiteoV odd Yo moiisiEV
i 4o pavTiD HasuassM brs boistunied
f 1ot gaiawcd vadhs IS




ANALYSIS OF MAGNETIC FIELDS IN A METAL
by

D. L. Waidelich

ABSTRACT

In the nondestructive testing of metals, experimental
measurements had shown that the attenuation of electromag-
netic waves originating from a masked probe and passing
through a thin sheet of metal was much less than that pre-
dicted by the use of a mathematical model employing plane
waves with the pulsed magnetic vector parallel to the sur-
face of the metal. An analysis was made by assuming that
the pulsed magnetic vector was perpendicular to the surface
of the metal. The results of both analyses indicated that the
attenuation in the metal was the same and was very nearly
equal to the attenuation observed experimentally. The plane-
wave analysis with the magnetic vector parallel to the metal
surface, however, would require a large attenuation at the
air-to-metal and the metal-to-air boundaries, whereas the
analysis with the magnetic vector perpendicular to the metal
surface would probably require very little attenuation at these
surfaces. These findings seem to indicate that the observed
difference is caused by the reflections occurring at the air-
to-metal and the metal-to-air boundaries, and that the anal-
ysis with the magnetic vector perpendicular to the surface
of the metal will predict verynearly the attenuation observed
experimentally.

I. INTRODUCTION

Masked probes have proven to be a useful addition to pulsed eddy-
current techniques for nondestructive testing.! An analysis of the pulsed
electromagnetic fields and currents near the probe is needed to aid in the
design of the probesz since previous analyses®'* with plane waves gave very
low values for the field transmitted through a metal sheet as compared with
values measured experimentally.5'6 A first attempt’’® to provide the neces-
sary analysis assumed a horizontal magnetic field above a plane metal sur-
face with the field appearing as a step function in time. Since the driving
field from a masked probe has, for the most part, a vertical component, a
vertical magnetic field was used rather than a horizontal field. A unit
impulse in time was used as the driving function so that the results would be
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simpler to interpret than the results for a unit step function. The use of a
convolution integral will enable the results for any driving function to be
obtained. A two-dimensional analysis was used for simplicity.

II. THEORY

By using the Maxwell equations as given in Appendix A, the following
expressions result for the magnetic and electric fields in a conductor:

fas )
n

(o+es)Vx7=T (1)

and

&=
I

V(V x 7'-;) - us(o+es) %. (2)

where the Laplace transform 7 of vector potential 7 is found from the wave
equation

V3T - us(o+es) 7= 0, (3)
and 0 = conductivity of the conductor, € = permittivity of the conductor,

i = permeability of the conductor, and s = complex variable as used in the
Laplace transform.

AR A two-dimensional geometry
0 P X was used for simplicity, and the metal
METAL’ } ‘ f 1 l l [ was assurped to be semi-infinite in

extent, as shown in Fig. 1. The
following assumptions were made:

z (1) The y axis extends out
306-341 Rev. 1 from the paper, and there is no var-
Fig. 1. Assumed Variation of the Magnetic iation with y.

Field at the Surface of the Metal
(2) The xy plane is the sur-
face of the metal. The vertical magnetic field in the surface of the metal is
an odd function of x (as shown in Fig. 1) and varies as e~ (x/%0), where Xg i8
a constant that represents the distance from the origin in which the field

intensity decreases to e .

(3) The applied vertical magnetic field varies as unit impulse in
time.

The vector potential then could have a component T in the y direction
only. In addition, if the displacement current in the metal is assumed very
small compared with the conduction current, Eq. (3) becomes
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Differential Eq. (4) was solved and the boundary conditions applied
as indicated in Appendix B. In the metal, the vertical magnetic field ob-
tained from the vector potential is

2 w2
ve VieW

H. = secamm—
= 2m/2y

[e-zuw Erfc(W-u) - e2uW Erfc(W + “)] ’ (5)

where

e /o _ zﬁ 1 f
i N R 4 S A
. 2'\/? FRVAR: ol =L ¥

Equation (5) represents the vertical magnetic field anywhere in the
metal for a unit impulse of vertical magnetic field at the metallic surface,
and for an exponential decrease of field in the x direction.

To obtain the effect of a field that is constant with distance in the
x direction, the case of x, approaching infinity was studied. This might,
for example, represent the variation of the field immediately under a
masked probe with the distance x magnified considerably so that the field
appears to remain constant with x, at least until x becomes quite large.
An additional advantage is that two variables are eliminated from the ex-
pressions, as detailed in Appendix C. Under the conditions that

Xq > xand%,\/at-I s > Ea e »

then

2
ve-V 3 4vie-V? Y

. Dalee e 2 gzt (€
In Eq. (6) put
1/2 2
Zr—:-‘f- H, = Ve V2 = £(V). (7)

A plot of f(V) versus V is shown in Fig. 2. As t increases, V decreases and,
from Fig. 2, the vertical magnetic field starts at zero, increases to a max-
imum, and then decreases to zero again.



R L R il

4 e byl a i TR e A
i ol B b e

Trin 00 TORIaN wlf

Pwiiggs ancitil A
2t SISEE vijgngsm oISV od

¥

-‘ "'rn B e

s+ Wil e = fu =W |22 :__1 '-';';TT‘S—“‘

s
S UMl R eabdwyas Lisit olh 34
aseyroe Hillsiein <4715

noilodsily

(gt saieie (b iftiw tastenco al e
goasiey 20l obednie Bew ylinddal o
i ‘2 naboy '%lajauv-cr"'.". skt od I
Blsii SE3 deds vy Nz sbires" b
VAR Sl -S3uD BenTdnod ¥ i 18
Koto SH7 rod) bassofelis a%s suideivs
1Ry RaN i haoy sify 1a9hall

.has”esassz';su ¥V esss ued e S (gl a pwile R
~EB B Gy goakeanl 2i1s1a Lisit sije fgm'ﬁ-“
Hf CHUR DL




I I I
o4 i
0.3 v3g-V2 o Fig. 2
§ 3 4 Variation of the Vertical Mag-
i netic Field in the Metal
01— -
L |
o 0 20 30

306-342

III. EXPERIMENTAL AGREEMENT

To verify Eq. (6), the curve of magnetic field intensity with no metal
present was used as the driving field. This curve was divided into six parts,
each 0.5 us long, and each part was regarded as a separate magnetic im-
pulse. We assumed that each impulse was applied to a 5/64-in. plate of
Type 304 stainless steel with the conductivity of ¢ = 1.39 x 10° mho/m and
the relative permeability of 1.02. A convolution integral was evaluated
numerically by using the above im-

pulses along with Fig. 2, and the result 1.4 T T T T
is shown as the calculated curve in MEASURED
Fig.3. The measured curve of Fig. 3 CALCULATED

(from Fig. 5 of Ref. 11) is the mag-
netic intensity after the field passed
through the stainless steel plate. The
magnitudes of the measured and cal- o —
culated peaks of Fig. 3 arenearly the
same, but the calculated peak occurs
later and decreases in magnitude | | |
much more slowly than the measured 0 | 2 3 4
peak. The applied pulse probably had ottt

a negative tail, which was not shown 306-343

since conduction in the thyratronused Fig. 3. Calculated and Measured Curves of the
to obtain the pulse would continue until Vertical Magnetic Field after Passing
the thyratron was completely deion- Hiosughis Seatalees Srel dlmer

ized. The effect of the negative tail

would move the calculated peak to the left and make the calculated curve
drop much faster than that shown after the peak had been passed; the peak
also would be reduced slightly.

Hz

Note also that this analysis is for two dimensions, whereas the
measurements were made in a three-dimensional setup. The effects of the
air-to-metal and metal-to-air surfaces were disregarded. Another impor-
tant assumption is that, from Eq. (6), the field in the metal resembles the
field from a solenoidal-type probe placed in the air immediately above the
metal.
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1V. PLANE-WAVE ANALYSIS

An analysis of a plane wave with fields parallel to the metal surface
and propagating in the z direction was expected to give far different results
than those obtained in Fig. 3. The analysis is presented in Appendix D; the
result from Eq. (D-6) is

1/2 5, ,2
S e Wl ), (8)

which is exactly Eq. (7) except that Hz has been replaced by Hyx. Then, if the
magnetic plane-wave pulse in the metal is of the form of Fig. 5 of Ref. 11,
the resulting calculated horizontal magnetic field must be that of Fig. 3.
Hence, either type of field would appear to give the same response in going
through a stainless steel plate, except for the direction of the field. A re-
ceiving coil was placed so that it would receive a vertical field much better
than a horizontal field. Since experiments seem to indicate a much larger
response for a vertical field compared with the calculated horizontal plane-
wave type of response, the difference is probably in the air-to-metal and
metal-to-air boundaries.

V. CONCLUSIONS

The vertical and horizontal plane-wave calculations appear to give
the same result for transmission through a metal plate, and this result ap-
pears to agree fairly well with measured values. If the boundary conditions
are considered, the result for the plane wave would be much lower. Thus,
further studies should be made of the air-to-metal and metal-to-air bound-
ary conditions when a vertical wave is impressed.

Other problems that should be investigated are a space-impulse
configuration of applied field and three-dimensional studies rather than the
two-dimensional work in this report. The space-impulse configuration
would probably approach that of an aperture in a mask fairly closely.
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APPENDIX A
Vector Potential
In a conductor, the Laplace transform of the Maxwell equations for

the magnetic field intensity H and electric field intensity E are

~

VxE = - usH, (A-1)

where (1 is the permeability of the conductor, and s is the complex variable
for the Laplace transform; further

UxH = (o+<-:s)'€=., (A-2)

where ¢ is the conductivity, and € is the permittivity of the conductor.
Let

H= (0+es) Vx5 (A-3)
where % is the vector potential.

Substitute Eq. (A-3) in Eq. (A-1) to get

v x [ﬁ + us(o+ €s) 'T?'] = 0, (A-4)
or

-;5 = -us(o +es) - v,

~ »
where ® is the transform of a scalar function ®. Now, by substituting
Eq. (A-3) in Eq. (A-2),

?:: VxVx#= v(v-?r)- vzfr. (A-5)

Use the gauge

Ve Jo (A-6)
and substitute Eq. (A-6) into Eqs. (A-4) and (A-5) to obtain
V3T - us(o +es) f = o. (A-7)

From Egs. (A-5) and (A-7),

f: = V(V"rsr) - us (0+e€s) . (A-8)

If differential Eq. (A-7) is solved for T, the magnetic and electric
field intensities may be determined from Eqgs. (A-3) and (A-8).
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APPENDIX B

Derivation of Fields

Assuming that the vector potential has only a y component 7 and that
the displacement current in the metal may be neglected, then

% | 3%

S+ 5 7 ouh (B-1)
The solution of Eq. (B-1) is
& oo
= / Ala)e~72%(cos ax) da, (B-2)
(]

where a is the eigenvalue, A(a) is a function to be determined from the
boundary conditions, and

Y = ous +al. (B-3)

From H = 0Vxﬁ,

ﬁx = -Og—: = Uf VA(a)e'y Z(cos ax) da, (B-4)
0
and
ﬁz =g sﬁx = -0 f aA(a)e- Yz(sin ax) da. (B-5)
0

2 = a
From Er= V(V~7—r)- OusT,

o0
f:y = o opsf A(a)e~V2(cos ax) da. (B-6)
)

The other field components ﬁy, ﬁx' and ﬁz are all zero.

At the surface of the metal

~
HZ
z=0

BENoAC O 7 A f aA(a)(sin ax) da. (B-7)
()

10
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When the inverse Fourier transform of Eq. (B-7) is used

Al) = - ———. (B-8)
mola?+ =5
(++53)

From Egs. (B-2) and (B-8),

. 2 ® e-zafous + a?

- W (cos ax) da. (B-9)

x5

From Eq. (14), p. 246 of Ref. 9 and by use of the shifting theorem,

g = 2
L-l(e-z,/oys ¢ a,z)= z/ope (@?t/op)e-(opz?/4t) (B-10)

2232 .

When Eq. (B-10) is placed in the inverse Laplace transform of Eq. (B-9),

zvu/o e'(0#22/4t)fm o-{a't/an) (cos ax)
0

N &=, (B-11)
y 3/2
(mt)* <a2+ _1_2)
X0
where Ty = L= ).
From Eq. (15), p. 15 of Ref. 10, .
my = - XoZ V#/o e- (ouz2/4t) o (t/oux3)
4724372
e'(x/xo) Erfc lﬁ-f EEN L o{XI%) Brfe _l-ﬁ+i\/i.7 :
X op 2 t Xo Vou 2 ¢
(B-12)
Let
x Jou e ST 1 ‘\/t_
= - — V = & — W = — —_ B-13
= 2«/? 2N it x Vou ( )

11
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then Eq. (B-12) becomes

Ve'vzewz 2uW W
o i SIS M PR “ u
my Vg Jort W e Erfc(W-u) + e2 Erfc(W +u)|.
(B-14)
From Eqgs. (B-4), (B-5), (B-6), and (B-14),
Ve'vzewz
H, = ————|e"2UW Erfc(W - u) - e2uW Erfc(W+u)], (B-15)
2m/%

2 we
_(1-2Vv?) e VeV

I:e'zuw Erfc(W -u) + e2uW Erfc(W + u)] -

4t/ HW
(B-16)
and
7 -VZ W2( 2 ur2
\'A o
g, - YWovelel (Vitw 3/2) e 29W Erfc(W - u) + e2%W Erfc(W+u)|.
3 2V 263/ 2y
(B-17)
The current density iy is
i, = OE,. (B-18)

The quantities u, V, and W are dimensionless, and since the applied
field is a unit impulse or 1 A—sec/m, the dimension of the magnetic field
intensity should be the unit impulse divided by time. This can be verified
by noting the units of H, in Eq. (B-15) and those of Hy in Eq. (B-16).
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APPENDIX C
The Constant-field Case

As xo approaches infinity (W -~ 0) the applied vertical magnetic field
approaches a constant with distance, except for the reversal of the field
direction for negative valuesof x as compared with positive values of x.
The potential 71y also approaches infinity in magnitude, but the vertical
magnetic field from Eq. (B-15) approaches

Erfu. (C-1)

The other field components also approach infinity.

If % is taken as very large but finite, Eq. (C-1) may be used as a good
approximation to the vertical field in the metal. More exactly, to use
Eq. (C-1), 2uW << 1, W << u or (x/xo) & 1, and (xxo/Z)(oy/t) >> 1. In ad-
dition, if u 3> 1 [i.e., (x/2)4/0/t >> 1], then Eq. (C-1) may be replaced by

_v2
VeV

HZ I — (C'Z)
/%

To use Eq. (C-2), the above three inequalities may then be replaced by the
two inequalities xo, >> x and (x/Z)JOWt >> 1.

13
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APPENDIX D

Plane-wave Analysis

The assumed configuration was again that of Fig. 1 except that now
both the electric and magnetic fields were parallel to the surface of the
metal. Since the only variation present would be inthe z direction, Eq. (3)
becomes

25 .
-d_zz_ = OusT, (D- 1)

where 7 is the vector potential in the y direction. Then
t = Ae~2/0us, (D-2)

where A is a constant. From Eq. (1),

fo=- £ - oJ/ous Ae”ZOHS, (D-3)

% %

Assume that Hyx at the surface of the metal is a unit impulse, and that

f:Ix = 1 = osfOlis A or A = 4 (D-4)

z=0 0./0}15‘

Substitute Eq. (D-4) in Eq. (D-2) and take the inverse Laplace trans-

form to get »
- 2
_ . (ouz /4t). (D-5)
b 0,/0pmt
Then,
Ay | AVeV | p\igue Hy = Ve V2 = gV) (D-6)
Hy, = -o?zx = or x = e = -

14
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